AI programs that play games

One of the very best media items I’ve found is this feature-length documentary about the program that beat an international master at the game of Go in 2016. It’s excellent as a documentary film — well-paced, sparking curiosity, exciting in some parts, and never pedantic.

You don’t need to understand anything about the game (which is immensely popular in China, Japan, and Korea, but not widely played elsewhere). It’s explained visually so that you can appreciate what’s going on. The film is free to watch on YouTube.

As a resource for learning about AI — or, more specifically, about machine learning — the film excels at helping us understand the work of the team of humans that created and trained the AlphaGo program. We don’t see a lot of people sitting at computer keyboards, typing. There are clustered people pointing at a screen, talking enthusiastically, or saying, “What happened there? Why did it do that?”

Probably my favorite moment in the film is after Lee Se-dol, the human Go master, has played a move that is so great, it was later referred to as “the God move.” The AlphaGo team begins analyzing the program’s responses in real-time, watching the graphs of its probability calculations on a large screen in their command center. For all the talk of AI as a black box that makes decisions humans can”t comprehend, this scene demonstrates that AI can be made transparent and accountable.

There’s much, much more to love about this documentary. The director, Greg Kohs, had extraordinary access to the DeepMind team during the months leading up to the five-game match with Lee. In the end, Google financed a general-audience-friendly film. (Google acquired DeepMind in 2014.)

In an interview with CNET, Kohs said the film “had very modest beginnings.”

“A couple members of Google’s creative lab that I’d worked with before gave me a ring and said we’d have access behind the curtain with [DeepMind founder and CEO] Demis Hassabis and his team. So I jumped on board with the expectation we would just film what happens for archival purposes and then put it on a shelf on a hard drive and that would be the end of it.”

Greg Kohs

Another wonderful aspect of the film is its humanity. I’ve seen a fair number of “scare essays” that predict the end of everything as AI gains dominance over its creators — but here we hear a more nuanced and thought-provoking set of views and reactions.

First, there is Lee, possibly the best (human) Go player who has ever lived, in closeup, in the very moment of his realization that the machine has bested him. Then there are the other Go experts, who understand more than you or I what the machine has actually done. Finally, there are the team members of DeepMind, who built the machine. Of course they are happy, ecstatically happy — but they are humbled, and even awed, as well.

At the end of 2019, Lee Se-dol retired as a professional Go player, at age 36. He is the only human who has ever defeated AlphaGo in tournament play.

More about AlphaGo:

Creative Commons License
AI in Media and Society by Mindy McAdams is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Include the author’s name (Mindy McAdams) and a link to the original post in any reuse of this content.

.

Getting thrown into machine learning

Early in 2018, I had several senior journalism students who wanted to learn about machine learning. I knew nothing about it, and they knew that, and we plowed forward together.

The three student teams chose these topics:

  • Sentiment analysis on subreddits for NBA teams
  • Analysis of county court documents naming our university
  • Analysis of tweets by one news organization for audience reactions, engagements

We quickly learned that knowing Python was a big plus. (Fortunately, we all knew Python.) Each of the teams found a different Python library to work with, and after a few weeks, projects were completed and demonstrated — although desired results were not achieved in all cases.

I crammed information mainly from two sources — a YouTube video series called Machine Learning Recipes with Josh Gordon, and something I’ve lost that explained in detail how a model was trained on the Iris Data Set. These provided a surprisingly solid foundation for beginning to understand how today’s machine learning projects are done.

Above: Histograms and features from the Iris Data Set

Since then, I’ve continued to read casually about AI and machine learning. As more and more articles have appeared in the general press and news reports about face recognition and self-driving cars (among other topics related to AI), it’s become clear to me that journalism students need to know more about these technologies — if for no other reason than to avoid being bamboozled by buzzword-spewing politicians or tech-company flacks.

Since May 2020, I’ve been collecting resources, reading and researching, with an intention to teach a course about AI for communications students in spring 2021. This new blog is going to help me organize and prioritize articles, posts, videos, and more.

If it helps other people get a handle on AI, so much the better!

Creative Commons License
AI in Media and Society by Mindy McAdams is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Include the author’s name (Mindy McAdams) and a link to the original post in any reuse of this content.